23 research outputs found

    Microstructural characterization and properties of selective laser melted maraging steel with different build directions

    Get PDF
    A nearly fully dense grade 300 maraging steel was fabricated by selective laser melting (SLM) additive manufacturing with optimum laser parameters. Different heat treatments were elaborately applied based on the detected phase transformation temperatures. Microstructures, precipitation characteristics, residual stress and properties of the as-fabricated and heat-treated SLM parts were systematically characterized and analyzed. The observed submicron grain size (0.31 μm on average) suggests an extremely high cooling rate up to 107 K/s. Massive needle-shaped nanoprecipitates Ni3X (X = Ti, Al, Mo) are clearly present in the martensitic matrix, which accounts for the age hardening. The interfacial relations between the precipitate and matrix are revealed by electron microscopy and illustrated in detail. Strengthening mechanism is explained by Orowan bowing mechanism and coherency strain hardening. Building orientation-based mechanical anisotropy, caused by ‘layer-wise effect’, is also investigated in as-fabricated and heat-treated specimens. The findings reveal that heat treatments not only induce strengthening, but also significantly relieve the residual stress and slightly eliminate the mechanical anisotropy. In addition, comprehensive performance in terms of Charpy impact test, tribological performance, as well as corrosion resistance of the as-fabricated and heat-treated parts are characterized and systematically investigated in comparison with traditionally produced maraging steels as guidance for industry applications

    Selective laser melting of high-performance pure tungsten: parameter design, densification behavior and mechanical properties

    Get PDF
    Selective laser melting (SLM) additive manufacturing of pure tungsten encounters nearly all intractable difficulties of SLM metals fields due to its intrinsic properties. The key factors, including powder characteristics, layer thickness, and laser parameters of SLM high density tungsten are elucidated and discussed in detail. The main parameters were designed from theoretical calculations prior to the SLM process and experimentally optimized. Pure tungsten products with a density of 19.01 g/cm3 (98.50% theoretical density) were produced using SLM with the optimized processing parameters. A high density microstructure is formed without significant balling or macrocracks. The formation mechanisms for pores and the densification behaviors are systematically elucidated. Electron backscattered diffraction analysis confirms that the columnar grains stretch across several layers and parallel to the maximum temperature gradient, which can ensure good bonding between the layers. The mechanical properties of the SLM-produced tungsten are comparable to that produced by the conventional fabrication methods, with hardness values exceeding 460 HV0.05 and an ultimate compressive strength of about 1 GPa. This finding offers new potential applications of refractory metals in additive manufacturing

    In-situ crack and keyhole pore detection in laser directed energy deposition through acoustic signal and deep learning

    Full text link
    Cracks and keyhole pores are detrimental defects in alloys produced by laser directed energy deposition (LDED). Laser-material interaction sound may hold information about underlying complex physical events such as crack propagation and pores formation. However, due to the noisy environment and intricate signal content, acoustic-based monitoring in LDED has received little attention. This paper proposes a novel acoustic-based in-situ defect detection strategy in LDED. The key contribution of this study is to develop an in-situ acoustic signal denoising, feature extraction, and sound classification pipeline that incorporates convolutional neural networks (CNN) for online defect prediction. Microscope images are used to identify locations of the cracks and keyhole pores within a part. The defect locations are spatiotemporally registered with acoustic signal. Various acoustic features corresponding to defect-free regions, cracks, and keyhole pores are extracted and analysed in time-domain, frequency-domain, and time-frequency representations. The CNN model is trained to predict defect occurrences using the Mel-Frequency Cepstral Coefficients (MFCCs) of the lasermaterial interaction sound. The CNN model is compared to various classic machine learning models trained on the denoised acoustic dataset and raw acoustic dataset. The validation results shows that the CNN model trained on the denoised dataset outperforms others with the highest overall accuracy (89%), keyhole pore prediction accuracy (93%), and AUC-ROC score (98%). Furthermore, the trained CNN model can be deployed into an in-house developed software platform for online quality monitoring. The proposed strategy is the first study to use acoustic signals with deep learning for insitu defect detection in LDED process.Comment: 36 Pages, 16 Figures, accepted at journal Additive Manufacturin

    Achieving grain refinement and ultrahigh yield strength in laser aided additive manufacturing of Ti−6Al−4V alloy by trace Ni addition

    No full text
    Fabricating fine equiaxed grains without undesirable secondary phases is highly challenging for additively manufactured Ti−6Al−4V alloy. The reference amount of Ni addition, which can achieve grain refinement without secondary phase formation, is 0.9 wt. % based on Thermo-Calc calculation. The Ti−6Al−4V−0.9Ni alloy produced by laser-based directed energy deposition demonstrate refined microstructure and an ultrahigh yield strength (1309 MPa). A modified quantitative model is proposed to analyse the strengthening mechanism, and the results demonstrate that the yield strength increment is mainly ascribed to the refined α phase. This work can contribute to the development of customised titanium alloy using additive manufacturing

    Superior strength-ductility in laser aided additive manufactured high-strength steel by combination of intrinsic tempering and heat treatment

    No full text
    This work investigated laser aided additive manufacturing (LAAM) high-strength steel by leveraging the intrinsic tempering effect to facilitate the formation of high-fraction of metal carbides (e.g. M23C6 and M7C3) in the as-built samples. The intrinsic tempering effect contributes to a superior mechanical property than traditional manufacturing methods in as-built condition, promoting subsequent heat treatments (HTs) for excellent mechanical properties. The influence of HTs on the microstructures and mechanical properties were characterised in multi-scales. A large number of carbides are intrinsically formed due to the tempering effect during deposition. The high-density dislocations in the as-built sample facilitate the formation of massive nano-twins and carbides during HT. The HTed sample achieves a true tensile stress of about 1.81 GPa together with a true strain of about 21%, achieving an excellent strength-ductility combination compared to wide-range high-strength steels processed by additive manufacturing and conventional methods. The grain and twin boundaries strengthening, precipitation strengthening and dislocation strengthening contribute to the high strength, while the good ductility originates from twinning induced plasticity (TWIP) and transformation-induced plasticity (TRIP) effects, and high work-hardening rate, during deformation. The findings imply a potential way to develop AM-customised materials by fully understanding and utilising the IHT effect

    Review on laser directed energy deposited aluminum alloys

    No full text
    Lightweight aluminum (Al) alloys have been widely used in frontier fields like aerospace and automotive industries, which attracts great interest in additive manufacturing (AM) to process high-value Al parts. As a mainstream AM technique, laser-directed energy deposition (LDED) shows good scalability to meet the requirements for large-format component manufacturing and repair. However, LDED Al alloys are highly challenging due to their inherent poor printability (e.g. low laser absorption, high oxidation sensitivity and cracking tendency). To further promote the development of LDED high-performance Al alloys, this review offers a deep understanding of the challenges and strategies to improve printability in LDED Al alloys. The porosity, cracking, distortion, inclusions, element evaporation and resultant inferior mechanical properties (worse than laser powder bed fusion) are the key challenges in LDED Al alloys. Processing parameter optimizations, in-situ alloy design, reinforcing particle addition and field assistance are the efficient approaches to improving the printability and performance of LDED Al alloys. The underlying correlations between processes, alloy innovation, characteristic microstructures, and achievable performances in LDED Al alloys are discussed. The benchmark mechanical properties and primary strengthening mechanism of LDED Al alloys are summarized. This review aims to provide a critical and in-depth evaluation of current progress in LDED Al alloys. Future opportunities and perspectives in LDED high-performance Al alloys are also outlined

    RR1 and RR2 gene deletion affects the immunogenicity of a live attenuated pseudorabies virus vaccine candidate in natural pig host

    No full text
    As virulence-determining genes, RR1 and RR2 encode the small subunit and large subunit of viral ribonucleotide reductase (RR) in pseudorabies virus which have been extensively studied in mice. However, their role in pigs has not been adequately investigated. In this study, we deleted RR1 and RR2 genes based on a TK/gE/gI triple gene-deleted pseudorabies virus and tested its efficacy in pigs as a vaccine candidate. The rescued virus showed similar growth properties and plaque size in vitro as its parent strain. In an animal study, the virus could elicit humoral immune responses shown by generation of gB-specific antibodies and virus neutralizing antibodies. However, vaccination could not provide protection against virulent pseudorabies virus challenge since vaccinated pigs showed clinical pseudorabies-specific syndromes. The deficiency in protection may due to the generation of late and low levels of gB antibodies and virus neutralizing antibodies
    corecore